

JUNE 4, 2025

EU Green Week Partner Event

Examining the Water-Energy-Food nexus at the buildingsUsing Environmental Performance Assessment Methods

Bahar Feizollahbeigi¹, Ricardo Mateus¹, Julia Seixas²

1 ISISE, ARISE, Department of Civil Engineering, University of Minho, Guimarães, Portugal.

2 CENSE – Center for Environmental and Sustainability Research & CHANGE - Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal.

THE WATER-ENERGY-FOOD NEXUS: BUILDING RESILIENCE TO GLOBAL CHALLENGES

WEF Nexus at Macro scale (national, regional)

Usually applied at the Macro scale Increasingly relevant at the building scale

Self-sustain buildings

Why WEF Nexus at the building scale?

- Helps address energy and water demands directly where they're used most
- Tools like green roofs, façades, urban farming, On-site energy and water systems (building as a mini-ecosystem)
- Reducing pressure on national infrastructure and supporting urban sustainability

Research Aim & Method:

How do current Building Sustainability Assessment Tools align, cover, and support the WEF Nexus?

BREEAM	Building Research Establishment Environmental Assessment Method BREEAM International New Construction 2021 Version 6.0						
DGNB	German Sustainable Building Council (Deutsche Gesellschaft für Nachhaltiges Bauen) DGNB System for new buildings version 2020- International						
LEED	Leadership in Energy and Environmental Design LEED for Building Design and Construction (LEED BD+C), New Construction and Major Renovations Version 4.1, 2023						
SBTool	Sustainable Buildings Tool SBTool for Buildings 2022 A						
Level(s)	EU Sustainable Buildings Framework Most recent consolidated version (2021–2022)						

Alignment matrix based on SD 243 BREEAM In-Use International: Residential Technical Manual (V6.0.0) for a residential building

Category	Criterion	w	E	F	Explanation		
Energy	Energy efficiency (systems, lighting, etc)	-	•	-	Reduces energy demand and emissions.		
Lifety	Renewable/low-carbon energy use	-	•	-	Promotes clean energy, reduces carbon footprint.		
	Water use monitoring & efficiency	•	-	-	Reduces water consumption and supports water security.		
Water	Leak detection and prevention	•	-	-	Prevents water loss and associated damage.		
	Water-efficient appliances/fittings	•	-	-	Lowers water demand in the building.		
Pollution	Pollution prevention (air, water, noise)	•	0	0	Protects water/soil for food, reduces energy for treatment, safeguards food production.		
	Stormwater management	•	-	0	Reduces runoff, supports urban agriculture.		
Land Use & Ecology	Biodiversity & green infrastructure	0	-	0	Enables urban agriculture, supports food systems, enhances water retention.		
	Composting facilities	-	-	0	Supports food waste recycling and local food production.		
Waste	Waste management (recycling, reduction)	-	0	0	Reduces landfill, supports circular food systems, saves embedded ener		
Materials	Sustainable material sourcing	0	0	0	Reduces resource competition and pollution, supports food safety.		
	Indoor air quality	-	0	0	Supports occupant health and food preparation safety.		
Health & Wellbeing	Daylighting and views	-	0	-	Encourages healthy lifestyles, supports food-related wellbeing.		
	Access to outdoor space	-	-	0	Enables gardening, community food growing, and healthy eating.		
Management	Building management & occupant engagement	0	0	0	Enables integrated WEF management, supports food-related community action.		
Transport	Transport (public, cycling, EV)	-	0	0	Supports local food supply chains, reduces energy for transport.		
Resilience	Resilience (climate, emergency)	0	0	0	Improves building response to WEF-related shocks (drought, heat, supply disruption).		

Alignment matrix based on **LEED** and WEF nexus

LEED Category / Credit	w	E	F	Explanation of Association
Water Efficiency	•	-	-	Directly reduces potable water use through efficient fixtures, irrigation, and water reuse.
Energy & Atmosphere	-	•	-	Directly targets energy efficiency, renewable energy, and energy management.
Sustainable Sites	0	0	0	Site design reduces runoff (water), vegetation/orientation can reduce energy demand, and supports urban agriculture/community gardens (food).
Materials & Resources	0	0	0	Sustainable sourcing and recycling reduce water/energy use in production and support food systems via composting and packaging reduction.
Location & Transportation	0	0	0	Compact development may reduce water demand, reduces transportation energy, and improves access to local food.
Innovation	0	0	0	Can introduce innovative solutions for water, energy, or food, depending on project focus.
Regional Priority	0	0	0	May address local water, energy, or food issues depending on regional context.

Nexus Link	Explicit Mention	Indirect Reference	LEED Categories Involved	
Water-Energy	ater–Energy - moderate		Water Efficiency, Energy and Atmosphere	
Energy–Food		-	Sustainable Sites, Innovation	
Water-Food	-	-	Water Efficiency, Sustainable Sites	

Alignment matrix based on **SBTools** and WEF nexus

SBTool Category / Credit	W	E	F	Explanation of Association	
Water Consumption & Management	•	0	0	Directly targets water savings and efficient use; indirectly reduces energy for water supply/treatment and may support food production via irrigation efficiency.	
Energy Consumption & Management	0	•	0	Directly targets energy efficiency and renewables; indirectly reduces water use for energy (cooling, generation) and energy for food processing.	
Site & Ecology	•	0	0	Directly supports water (natural hydrology), food (urban agriculture, biodiversity), and indirectly energy (microclimate, shading).	
Materials & Resources	0	0	0	Sustainable sourcing and recycling reduce water/energy use in production and support food systems via composting and packaging reduction.	
Indoor Environmental Quality	-	0	0	Ventilation, daylighting, and thermal comfort can reduce energy demand (indirect), and healthy indoor spaces support food preparation/consumption.	
Transport & Access	0	0	0	Compact development may reduce water demand, reduces transportation energy, and improves access to local food.	
Waste Management	0	0	0	Recycling and composting reduce energy/water use (indirect) and directly support food systems by managing organic waste.	
Emissions & Pollution	•	•	0	Pollution controls protect water and food systems directly, and reduce energy-related emissions.	
Innovation & Design Process	0	0	0	Can introduce innovative solutions for water, energy, or food, depending on project focus.	
Climate Change Adaptation	•	•	0	Directly addresses resilience in water and energy systems, and may indirectly support food security.	

WEF Nexus Link	Explicit Mention	Indirect Reference	SBTool Categories Involved	
Water–Energy	-	moderate	Water Use, Energy Systems, HVAC	
Energy–Food	-	Very Limited	indirectly by referring to Land Use	
Water-Food	-	Indirect and limited	Site Development, Water Reuse	
Systems Thinking	-	high	Resource Efficiency, Custom Adaptations	

Alignment matrix based on **DGNB** and WEF nexus

DGNB Category / Credit	w	E	F	Explanation of Association	
ENV: Environmental Quality	•	•	0	Directly addresses water (use, pollution, ecology) and energy (efficiency, renewables); may support food via biodiversity, soil, and green infrastructure.	
ECO: Economic Quality	0	0	0	Indirectly supports all pillars by promoting resource efficiency and life-cycle cost savings that can incentivize sustainable water, energy, and food solutions.	
SOC: Sociocultural & Functional Quality	0	0	0	Indirectly supports water and energy via user comfort and health; directly supports food through urban agriculture, healthy food environments, and community spaces.	
TEC: Technical Quality	0	•	0	Directly supports energy via building systems and controls; indirectly supports water and food through efficient technical solutions (e.g., smart irrigation, refrigeration).	
PRO: Process Quality	0	0	0	Indirectly supports all pillars by encouraging integrated planning, stakeholder engagement, and innovation, which can enhance water, energy, and food outcomes.	
SITE: Site Quality	•	0	0	Directly supports water (hydrology, stormwater), food (urban agriculture, biodiversity), and indirectly energy (microclimate, passive design).	

WEF Nexus Element	Explicit Mention	Indirect Reference	DGNB Criteria/Areas Involved
Water-Energy -		Strong	Environmental Quality, LCA
Water-Food /Land	-	Moderate	Site Quality, Ecological Quality
Energy–Food	-	Weak	Optional, context-dependent
Systems Thinking	Not called "nexus"	High	Integrated design, circularity, resilience

Alignment matrix based on Level(s) and WEF nexus

Category / Credit	w	E	F	Explanation of Association	
Water Use & Management	• 0 -		-	Directly addresses water consumption reduction and efficient management. Indirectly reduces energy for water treatment/distribution.	
Energy Efficiency ○ ● -		-	Directly targets energy performance and renewables. Indirectly reduces water use in energy production (e.g., cooling).		
Materials & Circularity	0	0	0	Sustainable materials reduce water/energy use in production and support food systems via compostable packaging/waste reduction.	
Health & Comfort	Indoor environmental quality indirectly su preparation/storage areas.		0	Indoor environmental quality indirectly supports food preparation/storage areas.	
Climate Resilience	•	0	0	Directly enhances energy system resilience; indirectly protects water/food systems from climate impacts.	
Site & Ecology		0	0	Directly supports water (stormwater management) and food (urban agriculture/biodiversity); indirectly supports energy via microclimate design.	

WEF Nexus Element	Explicit Mention	Reference	Level(s) indicator Involved
Water–Energy	-	Indirectly	Life cycle Global Warming PotentialUse stage energy performance. On-site renewable energyDrinking water consumption Use of non-potable water
Water-Food /Land	-	-	
Energy–Food	-	-	
Systems Thinking	Partially: LCA perspective resource flows , but not full systems thinking or WEF interlinkages		-Building life cycle assessmentGlobal warming potential -Resource use, water, energy -Design for adaptability and renovation -Design for deconstruction, reuse, and recycling

Comparative Matrix of WEF Nexus Alignment in Sustainability Rating Tools

Feature	ature BREEAM LEED		SBTool	DGNB	Level(s)
Explicit Mention of WEF Nexus	-	-	-	-	-
Water-Energy	Nater-Energy Medium level high		Medium	high	Moderate
Water-Food / Water-Land	Weak	Weak	Moderate (thru land use & irrigation)	Moderate (thru land use, green roofs)	Moderate
Energy–Food	-	-	Weak (optional, contextual)	Weak (contextual, via site use)	-
Systemic / Life-Cycle Thinking	Moderate	Moderate (via Integrative Process)	Strong (customizable LCA/LCC)	Very Strong (core principle)	Strong (through LCA, LCC, circularity principles)
Urban Agriculture / Food Systems	Weak	Weak (through inovaton category	Possible thtough customization	Indirectly supports (site quality)	-
Alignment with WEF Nexus Approach	Indirect, limited	Indirect, limited	Medium	high	Medium

Urban Agriculture

Alignment of Building Frameworks with WEF Nexus and Systems Thinking

Alignment with WEF Nexus

Findings

Water

- All tools include criteria for water efficiency, rainwater harvesting, and greywater reuse.
- All promote technologies and design strategies that reduce water demand and improve water management.

Energy

- Focus: energy-efficient design, renewables, and low-carbon technologies.
- Encourage energy modeling and lifecycle analysis to optimize consumption.

Food

- Direct food-related criteria are minimal.
- SBTool offers optional credits for urban agriculture and local food access.
- DGNB and BREEAM address land use and biodiversity.

Systems Thinking / Nexus Alignment

• They promote integrated design, lifecycle assessment, and resource efficiency, in line with WEF Nexus goals, especially SBTool and Level(s)

Trade-off analysis

- Cross-resource synergies are not deeply considered.
- **DGNB** and **SBTool** has the most potential and alignment.

Conclusion and Recommendations

Inclusion of Nexus-focused indicators

Integrating circularity principles can enhance the future version of these assessment tools

Thank You For Your Attention!

Bahar Feizollahbeigi

Beigi Bahar@yahoo.com

id10577@uminho.pt

Linkdln: bahar-feizollahbeigi-62819547

eco.lab – Laboratory of Building Physics and Technology
Institute for Sustainability and Innovation in Structural Engineering (ISISE)
Civil Engineering Department – University of Minho

