JUNE 4, 2025

EU Green Week Partner Event

Strengthening the WEFE Nexus through Sustainable Manufacturing: Evidence from Circular Economy Reengineering Integration

Milena Rajić, Marko Mančić, Milena Mančić Faculty of Mechanical Engineering, University of Niš, Serbia

THE WATER-ENERGY-FOOD NEXUS: BUILDING RESILIENCE TO GLOBAL CHALLENGES

Introduction

Global environmental challenges Climate change, biodiversity loss, resource depletion, and pollution Waste projection: 2.24B tons (2020) → 3.88B tons (2050) (World Bank)

Industrial impact
Industry contributes ~23% of global GHG emissions
Linear production systems drive unsustainable waste

Business pressures
Need to reduce costs and stay competitive
Traditional growth models conflict with planetary boundaries

Aligning Lean, Green, and Sustainable practices

Lean practices (Toyota, 1950s)

Focus - Value creation by eliminating waste (muda)

Tools - Kaizen, resource efficiency, process optimization

Limitation - Operational focus; lacks environmental/social emphasis

Green practices

Focus - Reducing environmental impacts (pollution, energy use)

Tools - ISO 14001, eco-design, green supply chains

Aligns operations with environmental performance

Sustainable practices

Broader scope - Triple bottom line (economic, environmental, social)

Linked to SDGs, stakeholder engagement, long-term vision

Lean Business Practices

Core Lean principles

Value Specification – From the customer's perspective

Value Stream Mapping-Identify inefficiencies

Flow – Ensure smooth, uninterrupted processes

Pull - Produce based on actual demand

Perfection – Continuous improvement (Kaizen)

Lean Tools

VSM – Process visualization and redesign

Kaizen – Employee-driven incremental change

5S – Workplace organization

JIT – On-time resource delivery

Kanban – Visual workflow control

Poka-Yoke – Error prevention mechanisms

Green Practices in Industrial Context

Core Principles

Pollution Prevention (vs. end-of-pipe solutions)
Resource Conservation (energy, water, materials)
Life Cycle Thinking (durability, recyclability, repairability)

Tools & Standards

Environmental Management Systems (EMS)

ISO 14001: Global framework for environmental performance Supports continuous improvement, legal compliance, stakeholder trust

Eco-Efficiency Metrics (WBCSD):

Energy Intensity – MJ/unit Water Intensity – Liters/product Carbon Footprint – kg CO₂-e/unit Waste Intensity – kg/1,000 units

Analytical tools: Material Flow Analysis (MFA), LCA, EPDs

Integrated Lean-Green-Circular PDCA Model for Zero Waste

Lean layer:

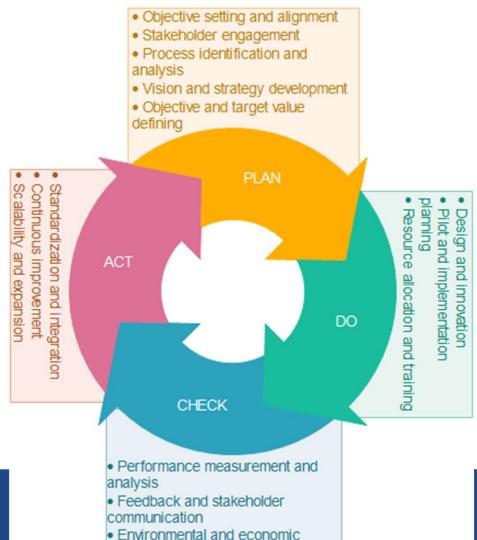
Focuses on efficiency, flow, and elimination of non-value-added activities.

- → Tools: VSM, Kaizen, Kanban, 5S
- → Metrics: Lead time, inventory turnover, waste per unit produced

Green layer:

Focuses on environmental impact mitigation and resource conservation.

- → Tools: LCA, EMS (ISO 14001), carbon accounting
- → Metrics: Energy intensity, water use, emissions, hazardous waste


Circular economy layer: Focuses on lifecycle thinking and regenerative systems.

- → Strategies: Eco-design, product-service systems, secondary raw materials
- → Metrics: Material circularity index, recycling rate, reuse ratio

Sustainability outcomes layer: The synthesis of all layers to generate triple-bottom-line impacts.

- → Goals: Net-zero waste, decoupled resource use, SDG compliance
- → Instruments: Sustainability reporting (GRI), SDG impact indicators

Integrated Lean-Green-Circular PDCA Model for Zero Waste

impact assessment

#EUGREENWEEK

Territorial Distribution

South and East Serbia: 40%

Vojvodina: 22.2%

Sumadija and West Serbia: 22.96%

Belgrade: 14.81%

Sectors Covered

Food industry: 25.19%

Metal processing/mining: 23.70%

Wood industry: 19.26%

Other sectors: construction, rubber/chemicals, energy

Enterprise Size

Micro: 33.33% Small: 30.37% Medium: 19.26%

Large: 17.04%

Age of Equipment

10 years: 42.96%

5-10 years: 40%

<5 years: 17.04%

ISO Certification

ISO 9001 (Quality Management): 59.26%

ISO 14001 (Environmental Management): 44.44%

None certified: 40%

Energy Sources Used:

1-2 types: 68.89%

3 types: 23.70%

4 types: 7.41%

Significant Energy Consumers:

≤5 processes: 69.63%

Average Annual Energy Consumption:

≤200 TJ: 27.41%

200-2,000 TJ: 34.81%

2,000–10,000 TJ: 31.11%

10,000 TJ: 6.67%

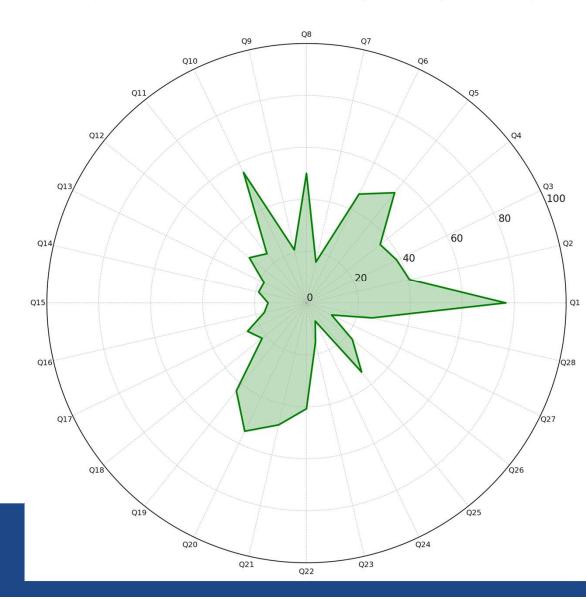
Categories with High Application Scores (Score = 2):

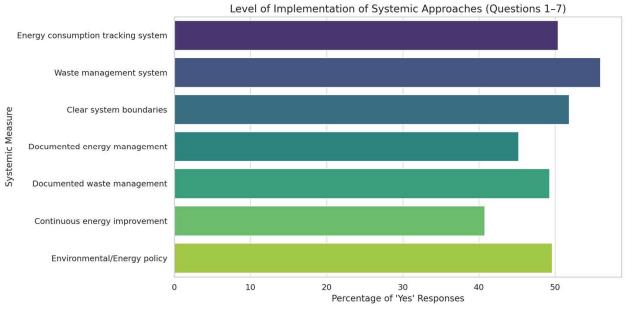
Waste classification and separation
Paper and packaging recycling
Water reuse and wastewater management
Energy metering and monitoring
Staff training for resource efficiency

Categories with Moderate or Low Scores (Score = 0 or 1):

Life Cycle Assessment (LCA)
Product eco-design
Use of biodegradable materials
Reverse logistics systems

Implication: While operational practices are partially implemented, strategic CE tools (LCA, eco-design, reverse flows) remain underutilized.




Implementation Levels of Circular Economy Practices (28 Indicators)

Results

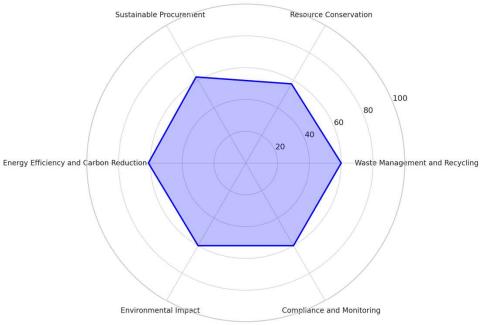

Q1 (Waste Selection – 76.67%) and weak adoption in Q23–Q27 (Water reuse, LCA, renewable energy products – under 20%).

Figure: Radar chart of average implementation levels of 28 surveyed circular economy practices across Serbian manufacturing companies.

Environmental and Energy Efficiency Assessment (%)

CONCLUSION

The paper proposes an Integrated Lean–Green–Circular PDCA Model for Zero Waste, validated with real survey data.

The model provides companies:

Plan by setting zero waste goals and identifying hotspots via value stream mapping and eco-efficiency diagnostics.

Do by deploying cleaner technologies, lean methods (5S, Kaizen), and CE strategies (eco-design, reuse, modularity),

Check via rigorous KPIs, LCA, and ISO-aligned auditing systems,

Act by scaling successful interventions, standardizing practices, and updating metrics for continuous improvement.

Companies that will use lean-green-circular synergies are more likely to reduce risk, increase efficiency, and strengthen resilience in a decarbonizing global economy.

Thank you

milena.rajic@masfak.ni.ac.rs

